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ABSTRACT

A brief introduction to the fundamentals of Neural Nets is given first,

followed by two applications in structural optimization. In the first case

the feasibility of simulating with neural nets the many structural analyses

performed during optimization iterations was studied. In the second case

the concept of using neural nets to capture design expertise was investi-

gated.

1. INTRODUCTION

Considerable activity can be observed in the development and applica-

tion of a certain class of trainable network paradigms, namely the biologic-

ally motivated Artificial Neural Nets (ANN). This upsurge of developmental

activities is expected to contribute to the availability of powerful new

capabilities in the near future. It is this expectation that motivated the

examination of the usefulness of ANN in structural optimization as one of

the many potential applications in structural analysis and design.

It appears that only a few structural problems were investigated as

demonstrations of neural net capabilities. References I and 2 are examples

dealing with simple oscillators and a beam design problem, respectively.

As will be discussed in subsequent sections, there are many potentially

productive applications.
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Developments in Computational Structures Technology (CST) are closely
linked to developments in computational capabilities. ANNtechnology, and
its exploitation for CSTfalls in the samecategory and an initial investi-
gation, as reported here, appeared warranted. CST is very demanding on
computer resources and newapproachesfor their utilization are continuously
being explored. For example it is not widely knownthat the first engineer-
ing application of Artificial Intelligence (AI) in the form of a rule based
expert systems was in structural analysis. This first expert system
capability, Structural Analysis Consultant (SACON)became somewhatof a
classic model for similar applications (refs. 3,4). AI is now a widely
accepted technology for engineering applications as illustrated by the large
numberof conferences and publications.

Artificial neural nets are also a class of AI paradigms, and provide
newopportunities for applications of computer science developments in CST.
This brief note proposes a few potentially profitable applications and
presents results of feasibility studies associated with automated structural
design.

Only the basic ideas of artificial neural nets will be provided in this
brief study. References 5 and 6 are recommendedfor those interested in a
detailed introduction to neural nets. Reference 6 also describes an
extension of neural nets called "functional links." This represents an
extension of the biologically motivated approaches towards more specific
mathematical functionalities present in engineering or other applications.

i

The feasibility studies presented here were conducted using well known

small "toy" problems. Research is underway to explore the limits of

applicability. This includes increasing problem complexity and dimensional-

ity as indicated by the number of input-output variables, and the nature of

nonlinearities in their functional dependence. As will be discussed next

the "training" of neural nets involve the minimization of some error

measure. Consequently, limitations ondimensionalityofproblems associated

with optimization techniques also apply, at least in the case of ANN
utilized in this study. ANN hardware is the subject of vigorous develop-

ments and eventually may provide considerable increase in processing power.

2. BASIC CONCEPTS OF ARTIFICIAL NEURAL NETS

As stated earlier, only a brief and incomplete introduction is given

here, and References 5 and 6 are suggested as introductory reading. Many

other texts are available, and the body of publications is increasing very

rapidly.

Neural nets can be viewed in different ways. The original motivation

came from creating computer models that can mimic certain brain functions,
and the word neural was attached to the designation of this class of models.

For computer specialists ANN are a class of parallel distributed processors

with some particular processing capability in the artificial neurons and



modification of data during communicationamongthem. The particular class
of ANNutilized in this study can be viewed either as brain function models
if one is romantically inclined, or simply as a flexible technique for
creating nonlinear regression models for data with complex interdepend-
encies.

Figure la shows a simplistic representation of a neuron with the
following components of interest: a cell body with the mechanismwhich
controls cell activity, the "axon" that transmits stimulus from one neuron
to others, the "dendrites" which also receive electrical signals from
connected neurons or from an external source, and the "synapses" which
define interconnections and their respective strengths. In a humanbrain
the numberof neurons approachesa trillion, each connected perhaps to tens
of thousands of other neurons forming an immensenetwork. Figure Ib shows
a small segment of this network in the cerebral cortex.

Artificial neural nets were conceived as very simple models of certain
brain activities. Of interest for us here are those aspects of biological
neural net activities that are associated with learning, memory, and
generalization from accumulated experience. Learned information is thought
to be represented by a pattern of synaptic connection strengths that modify
the incoming stimuli, strengthening or inhibiting them. Whenthe accumula-
tion of the received stimuli in the neuron reaches a certain threshold, it
"fires," sending out an electrical stimulus to all connected neurons.
Learning in turn is thought to be associated with the development and
retention of a pattern of the connection strengths, in various regions of
this immensenetwork. It has been suggested that such retained patterns
are somewhat similar in nature to holograms that also contain complex
information in a vast arrangement of simple patterns.

Artificial neural nets simulate the above activities in brain tissue
through very simple concepts. An artificial neuron receives information
labeled xi from the incoming n connections from other neurons Ks indicated
in Figure 2a. Such neurons and their connections can be assembled in
principle into any architecture of connectivities as indicated in Figure 2b.
The information x_ sent out by the connecting neurons and received by the
jth neuron of a bet are modified by connection strengths w_.. The jth
neuron performs a summationof the modified information as al_o indicated
in Figure 2a., and processes the value r of the sumthrough an activation
function producing an output zi. This output is then sent as a stimulus to
all connecting neurons, and _etermines in turn, the activity of those
neurons. Figure 3 shows a few activation functions, with the sigmoid
function being the most popular. Morecomplex neuron activation functions
can be devised for various special purposes.

Training of neural nets of interest here involves the evolution of the
connection strengths wiieverywhere in the net through "training". Sets of
knowninput and associ_ed output values are presented to the net and the
w.. are adjusted during an iterative procedure to minimize a selected error
m_sure between the desired output and the one produced by the net. Once



trained, the network responds to a new input within the domain of its
training by "propagating" it through the net and producing an output. This
output is an estimate within certain error, of the output that the actual
computational or physical process would have produced.

Several neural net paradigms have emerged as a result of over four
decades of research, each with its own purpose and capabilities. The
particular class of neural nets that are of interest to us here fall in the
category of "feed forward" nets because the input data given to the network
is propagated forward towards the output nodes. The "delta-error back
propagation" algorithm (see Refs. 5 or 6) is used usually for their
"supervised" learning. It is essentially a special purpose steepest descent
algorithm to adjust the w_ connection strengths, and other additional
internal parameters that ag# sometimes added to increase flexibility. In
principle other optimization methods can also be used, and the development
of efficient learning algorithms is an active area of research.

Most currently available neural net capabilities are simulations of
the distributed parallel processing concept on serial machines, and such
simulations were also used in this study. Neural nets present premier
applications for parallel machines or for the developments of special
purpose hardware. These approaches are all being investigated, and neural
nets enjoy vigorous funding and developments worldwide. As mentioned
before, it is this fact that served as motivation for the present study.
Other CST applications are also being investigated in view of expected
increases in capabilities.

To start out with an application one requires a set of knowninput and
output pairs that must be generated by the "real" process one is planning
to simulate. The numberof training pairs, and how they span the intended
domain of training, is part of what is still an art in ANNrequiring
experimentation and experience. The samestatement is also valid for the
architecture of the neural net one intends to use. The examplesgiven later
will provide some idea of what is required for a successful application.
For the engineering applications presented here, it is perhaps worthwhile
to think of neural nets as a peculiar automated multidimensional surface
fitting or nonlinear regression capability. What one would accept as a
representative input-output set to produce a useful surface fit, is most
likely a good start to determine the training pairs for the neural nets.

For the present application it is sufficient to discuss the simplest
forms of net architectures. A single layer net is called a "flat" net and
is of little interest here in its basic form. It has limited capabilities
to represent nonlinearities unless these are specifically captured in the
input. An example of this is the use of reciprocal variables in problems
involving structural stiffness, a case to be discussed later. Reference 6
provides a powerful generalization of this concept referred to as
"functional links" In general, nets have an input and output layer with
the number Of neurons in each of these matching the number of input and
output variables, respectively, and one or more "hidden layers." As an
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example, Figure 4 has two nodes in its input layer, three nodes in its
single hidden layer, and one node in its output layer. In later discussions
such a net will be designated a (2,3,1) net signifying the numberof nodes
in its three layers. A net can provide an n-to-m mapping, which, for the
case of Figure 4, is a 2-to-I mapping.

The numbern and mof nodes in the input and output layer is determined
by the number of input and output variables in. the training set. It is
however, important to determine the necessity of one or more "hidden" layers
in the network. A single hidden layer with nodes numbering somewhere
between the average and the sumof the input and output nodes is suggested
in the literature as a good first start. To add more layers for added
flexibility is a temptation which must be resisted in the simple cases
addressed in this note. Ageneral suggestion is to try to use as few nodes
as possible. As in any optimization problem one should avoid needless
increase in the number of optimization variables.

The n-to-m mappings discussed here can also be separated into m n-to-
I mappings or a number of mappings involving groups of output variables.
Very large problems mayhave to be separated that way to keep the numberof
learning parameters within a practical range for any of the single mappings.
For the small problems discussed here, and basedon limited experimentation,
the training times for one n-to-m mapping appeared to be slightly more
favorable than for the equivalent m n-to-1 mappings to equal accuracy.

Once an architecture has been selected, the t_aining starts out with
a randomset of connection weights w.. usually generated automatically by
the particular capability used. Thes_Jconnectionweights are then adjusted
by a learning algorithm to minimize the difference between the training
output values and the values produced by "propagating" the associated input
through the net. The training is sensitive to the choices of the various
net learning parameters. The principal parameters are the "learning rate"
which essentially governs the "step size," a concept familiar to the
optimization community, and the "momentumcoefficient" which forces the
search to continue in the samedirection to aid numerical stability, and to
go over local minima encountered in the search.

During supervised learning these parameters are adjusted periodically
based on the changing convergence trend during iterations. In the "Ten Bar
Truss OptimumDesign Expert" examplediscussed later, a publicly available
NASAdeveloped capability NETS2.0 wasused. its user manual, Reference 7,
provides a good introduction for someonewho would like to experiment with
neural nets. NETS2.0 has a number of other learning parameters and
provides good default values for them, including some adaptive features
during training iterations. A few possible applications within CST are
suggested next, followed by a representative set of the results obtained in
preliminary feasibility studies.



3. NEURAL NETS IN COMPUTATIONAL STRUCTURES TECHNOLOGY

The history of the exploitation of computer technology by CST can be

viewed, even if somewhat romantically, as attempted simulations of the brain

processes of an expert designer at higher and higher levels of abstraction.
Procedural codes, expert systems, and neural nets represent this higher and

higher levels of abstraction from "number crunching," "expert judgments" and

finally a "feel" for a problem area, respectively. These three levels

represent increasing intellectual levels and ability to provide quick expert

estimates for solutions with less and less participation required of the

human user. The final aspiration of researchers in CST is the development

of automated expert design capability; neural nets perhaps provide an

approach towards that goal.

As described earlier, artificial neural nets perform their functions

by developing specific "patterns" of their connection weights. These

patterns, and not any individual value serves as the storage of the

knowledge. It would be naive to make much of this supposed similarity to
brain functions. Much has been learned about the electrochemical activities

of brain cells and of the vast neural nets they form. What all that means

is poorly understood if at all, and the functioning of the brain remains

largely unknown. Amore realistic view of the class of neural nets employed

in the present study would be that they are essentially glorified surface

fitting capabilities. The important consideration is that neural net

research activities are expected to result in major novel hardware and

software capabilities when compared to other mathematical procedures for

nonlinear regression.

The major advantage of a trained neural net over the original (computa-

tional) process is that results can be produced in a few clock cycles

representing orders of magnitude less computational effort than the original

process. This processing time, once the net is trained, is also insensitive

to the effort it takes to generate an output by the original process.

Consequently benefits can be higher for those problem areas that are

computationally very intensive, such as optimization, especially in

multidisciplinary settings. There is of course a catch, namely that in

those cases the generation of sufficient training data is also costlier.

Practical applications can be envisioned where a problem is frequently

solved within limited variations of the input parameters. Organizations

with specific products for slightly changing applications could develop or

evolve trained neural nets based on sets of past solutions. New solutions

could then be obtained with negligible efforts. Machine components that are

of a certain basic configuration slightly changing from application to

application could be good practical examples.

The wi3weights, as they develop, may contain information concerning
hidden funL'tional relationships between the variables for some of the

applications providing "feature extraction" capabilities. A version of

neural nets designated as "unsupervised learning" has such feature extrac-
tion capabilities. Training pairs can be preprocessed to be grouped



into clusters based on similarity of features within a certain selected
radius. Training effort is then reduced by using the "centers" of such
clusters for generalization.

Multidisciplinarydesign optimization provides particularly intriguing
possibilities. For example, nets could be trained for each of the partici-
pating disciplines, and integrated to represent appropriate coupling or to
use an additional net that develops the important coupling functionalities
through feature extraction.

The feasibility of two particular applications at two distinct levels
of abstraction were studied in somedetail and the results are presented
next. The first one involved training a neural net to replace analyses of
given structural configurations during optimization iterations. The second
exercise was to train a neural net to provide estimates of the actual
optimum structures directly totally avoiding the conventional analysis and
optimization iterations.

4. NEURAL NET ASSISTED OPTIMIZATION.

This first feasibility study to simulate analysis with the quick

response of neural nets was motivated by the approximation concepts in

structural optimization. The idea here was to train a neural net to provide

computationally inexpensive estimates of analysis output needed for

sensitivity evaluations, which in turn is needed by most optimization codes.

The numerical experimentation also served to gain initial experience with
neural nets.

The familiar five bar and ten bar truss "toy" problems, shown in

Figures 5 and 6 respectively, were used for this initial feasibility study.

First, various sets of input-output training pairs and network configura-
tions were examined to find the combination that reduced the training effort

and produced trained nets which yielded good results as measured by their

ability to generalize.

Once an acceptable trained neural net was obtained, it was attached to

an optimizer, and all analysis information was obtained from it instead of

invoking a conventional analysis capability. Mixing neural net predictions

with occasional conventional analyses was not explored, but it is an

approach that could possibly exploit the advantages of both.

To create the training sets conventional optimum designs had to be

created for two reasons. First, optimum designs were required for compari-

sons with designs obtained using neural net simulation of the analyses. The
second was to perform analyses with random sets of the values of the design

variables, in this case the bar areas, within certain preset variations of

their optimum values. The optimization involved constraints on the nodal

displacements. Consequently, the input-output training pairs for analysis

simulation consisted of the bar areas as inputs and nodal



displacements as analysis output variables respectively. Howmanypairs to
use, and within what range of variations, is itself a research question.
Becauseof the nature of the sigmoid function at least the output variables
are to be scaled by the user or automatically by the neural net code, to
within the most active range of the sigmoid function. Scaling minimumand
maximumvalues to 0.I and 0.9 is usually suggested.

At this point one has to prescribe the numberof iterations for which
the network must be trained to obtain desired levels of accuracy. A number
from a few hundred to tens of thousands is routinely accepted in neural net
applications, even for small nets as in this study. For this level of
experimentation one often initiates a run on a PCor a work station and lets
it run to a large numberovernight in somewhatof an overkill.

Someof the net configurations examinedfor the five bar truss exercise
are shown in Figure 7. As the first attempt a 5-to-4 mapping with a (5,4)
net was tried with no hidden layer as shownin Figure 7a. The four output
variables were the four nodal displacements indicated in Figure 5. Since
the active constraints were essentially related to displacements dp and
dd, the rest of the nets considered only these two displacements as output.
F_gure 7b consequently is a (5,2) net with reduced training effort. Figure
7c is a (10,2) net with the reciprocals of the bar areas also included to
help the net capture without a hidden layer the inverse relation betweenbar
areas and nodal displacements. Table I contains data on the results of
these initial training efforts with other functional relationships also
included to try to capture nonlinearities. These at/empts without a hidden
layer were not totally satisfactory in terms of obtained accuracy or number
of required training cycles.

Including a hidden layer, as shownin Figure 7d, produced acceptable
results. Table 2 presents the results of optimization using various net and
training set combinations. Using the (5,7,2) net and scaled variables, an
optimumdesign was obtained within 2.4%of the exact optimumdesign proving
the feasibility of the basic concept of neural net assisted optimization.
Table 3 presents the results of similar experimentation for the ten bar
truss supporting the sameconclusion. Similar results were obtained for a
higher dimensionality wing box problem.

5. NEURAL NETS AS EXPERTS FOR DIRECT OPTIMUM DESIGN ESTIMATES

The next set of experiments were conducted to explore the idea of

training a neural net to estimate optimum designs directly for given design

conditions and bypass all the analyses and optimization iterations of the

conventional approach. It is conceivable in practice that successful

similar designs could be collected within some domain of design conditions,

input-output pairs defined, and then a neural net trained to serve as

"intelligent corporate memory" that can provide a new design for different

design requirements instantaneously.



Nowlet us suppose that we work in a company that markets equipment
that is mounted in all cases on ten bar trusses as shown in Figure 6. These

trusses have to carry the equipment weight (2 X 100 K) at the two lower free

nodes while these support points cannot deflect more than 2 in. The

dimensions LI and L_ and H of the trusses can vary between 300 and 400

inches, depefiding o_ the particular installation. The engineer who was

designing the trusses for the past 30 years and could simply tell the

optimum bar areas for any combination of those d_mensions has just retired.
Can we create an accurate simulation of this departed expert? Yes we can,

and rather simply!

To experiment with various training sets, optimum designs were gene-

rated by conventional methods for varying first only H in 5 inch increments.

The results are given in Table 4. There are three kinds of output numbers
in the set. These are the bar areas that change, areas that are at the

preselected minimum value of 0.1 for all designs, and the weight, which is

of a different order of magnitude. A representative AI and Ap, and the
optimum weight Wt were considered in the first numerical experinrents. The

neural net code NETS 2.0 (Ref. 7) was used for all of the direct optimum

ten bar truss design exercises.

A number of small net configurations were tried for these I-to-3

mappings more or less as a learning exercise . Table 5 shows the results

of training with a (1,6,3) net, a probable overkill with too many nodes in

the hidden layer. Table 6 gives the results of design estimates of the

trained net for the remaining check cases of Table _ that. were not included

in the training set. The training was performed to I% RMS accuracy within
200 iterations. As can be seen, both the training accuracy and the

estimates for the new cases is around a third of one percent for the

individual values and can be considered quite satisfactory. It is also of

some interest to note that the net had to evolve its wi_ connection weights
and other internal parameters provided by NETS 2.0 in s_ch a manner that it

could also reproduce a constant .1 value for any input while also producing
accurate values of variables of different orders of magnitude for the same

inputs.

After the above limited exercises the 3-to-11 mappings were performed

between L1"L_'IH'ra_he_and the ten bar areas A,,...,Aln and the optimum weight
Wt. A imited training set of onl_ ten ih_ut-output patterns was

created using ten random sets of L1, Lp and H and the corresponding ten
optimum designs. It is interestin_ to'note that ten training pairs did

quite well in this case versus the hundreds of training pairs used for the

neural net assisted optimization study. Of course, in this problem only
three variables are varied to cover a domain. The net used for this

exercise is shown in Fig. 8. The ten optimum designs used for training the

net are given in Table 7. Optimum designs were then obtained for another

seven random sets of L], L_, and H, as checks on the estimates obtained
from the trained network. TaBle 8 shows the seven design conditions and the

optimum designs.
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The (3,14,11) net given in Figure 8 was used with the nodes in the

hidden layer taken as a sum of the input and output nodes. The training was

repeated with a (3,6,11) net which also was successful but the learning

parameters had to be adjusted after about 100 iterations. During experi-

mentation with various options during training, it was found that it is

beneficial to code the 0.1 minimum sizes as 0.5. The active midpoint of

the sigmoid activation function is the explanation. This value also

represented net accuracy in better detail. NETS 2.0 worked very well, and
I% RMS accuracy was obtainable with 200 iterations in around 30 seconds on

a SUN 386i, and using only the default values for the learning parameters

for the (3,14,11) net. Because of this good performance, exercises were

conducted to overtrain the net. Letting it run for 5000 iterations an RMS

accuracy of 0.006% was obtained. Over-training is to be avoided because the

neural net at that point becomes a memory with lessened ability to general-

ize. The overtrained net actually reproduced the training results exactly,

but it did a little worse if anything against the seven check conditions

than the net trained only for I% RMS accuracy. The results are shown for

one of the check cases in Fig. 9 where the first bar is the desired result,

the second is obtained with I% RMS accuracy and the third is obtained with

0.006% RMS accuracy of training. As can be seen nothing has been gained in
accuracy of the estimated results.

Table 9 shows comparisons and the percent error of net estimates for

the seven check cases of Table 8 for the net trained for I% accuracy. As

can be seen, the results are quite satisfactory and certainly would be good

enough information to produce the ten bar trusses to support the equipment

at minimum weight and 2.0 inches maximum deflections. The net produced its

estimates by computing a few sums of products in practically no computer

time. The mental activities our retired expert designer employed to come

up with his optimum designs have been replaced by a trained (3,14,11) neural
net of similar capability for this limited task.

6. CLOSING REMARKS

It has been shown that artificial neural nets have intriguing applica-

tions in Computational Structural Technology. What has been presented here

are two of the possibilities. There are now efforts underway to explore

multidisciplinary design applications, to "package" composite material

property generation codes as quick response neural net simulations, to

develop structural component life prediction capabilities and to capture

constitutive material relationships both from theoretical codes and directly

from test data. Integrating neural net capabilities with exPert systems and

optimization algorithms into an automated capability to generate trained

neural nets once the domain of interest is defined for often occurring

structural components in a design office is also being explored. There are

many other applications possible. Controls is one of the most successful

applications of neural nets. Investigations dealing with control of large

space structures and with smart structures could also prove profitable.
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Table 1. Summary of Training Results with no Hidden Layer

Number of Network Description Cycles of Error Description
Training Sets Training

50

50

50

50

(5,2) - five areas as inputs, two
vertical displacements as outputs.

(10,2) - five areas and five
reciprocal areas as inputs - two
vertical displacements as outputs.

(15,2) - five areas and ten area
products of type Ai Aj (i f j) as
inputs - two vertical-displace-.
ments as outputs.

(20,2) - five areas, five reciprocal
areas and ten values of• type
sin(Ai/Amax), cos(Ai/Amax) used as
input - two vertical displacements
as output.

1500

50000

50000

50000

: 0.087
Error not decreasing

= 0.03927
Error decreasing slowly

: 0.05235
Error decreasing slowly

= 0.0398
Error decreasing slowly

(xx,yy) denotes xx input nodes and yy output nodes.
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Table 2. Optimal Design for Five Bar Truss Using Trained Neural Net

for Analysis

Network Description

(5-7-4) ....
200 training sees, _i,
four output displace-
ments mapped.

(5:7-4)
500 training sets, all
four output displace-
ments mapped.

(5-7-2)
I00 training sets, two
vertical displacements
mapped.

(5-7-2)
100 training sets, two
vertical displacements
scaled as constraints
and mal)ped.

Design Variables

XI X2 X3 X4 X5

Initial 1.0 1.0 1.0 1.0 1.0

Final 2.131 2.032 2.679 2.766 1.0

Initial 1.0 1.0 1.0 1.0 1.0

Final 1.952 2.013 2.763 2.760 1.0

Initial 1.0 1.0 1.0 1.0 1.0

Final 1.535 1.778 2.29 2.265 1.0

Initial 1.0 1.0 1.0 1.0 1.0

Final 1.505 1.584 2.138 2.211 1.0

Exact
Solution 1.5 1.5 2.121 2.121 1.0

Objective
Functions

58.28

128.626

50.28

107.56

58.28

102.399

100.0

(xx-yy-zz) denotes a three layer architecture with xx input layer nodes, yy hidden
layer nodes, and zz output layer nodes.

Table 3. Optimal Design for Ten Bar Truss Using Trained Neural Net for Analysis

Design Network Description
Variables

XI

X2

X3

X4

x51-

X6

X7

X8

X9

Xl)

Obje:tive
Function

(10-6-6-2)*
I00 Training Sets
Used in a Range
of ±25% About

Opt i mum

30.774

(10-6-6-2)*
400 Training Sets
Used in a Range
of ±25% About

Ol)timum

0.112

L7.40

11.425

0.108

0.487

5.593

22.953

20.886

0.100

4692.49

30.907

0.100

19.136

14.279

0.100

0.434

5.593

20.031

19.966

0.100

4666.71

(10-6-6-2)
100 Training Sets Used

in a Range o_
0.01-55.0 in_

Output Scaled to Reduce
Range of Variation

30.508

0.100

26.277

11.415

0.100

0.413

5.593

21.434

22.623

0.100

5010.22

Solution From
Exact Analysis

30.688

0.I00

23.952

15.461

0.I00

0.552

8.421

20.606

20.554

0.100

5063.81

* Lower bound of design variables used as initial design - was infeasible.
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Table 4. Ten Bar Truss Optimum Designs with

H as Design Condition

II

300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400

AI A2 A3 A4 A5 A6 A7 A8 A9 AI0 WT

i 6.34 6 15 6.15 .19.53
9.37
9.22
9.07
8.93
8.79
8.66
8.53
8.40
8.28
8.16
8.05
7.93
7.83
7.72
7.61
7.51
7.42
7.32
7.23
7.14

I 9.67 4.73
1 9.51 4.65
1 9.36 4.57
1 9 21 4.50
1 9 07 4.43
1 8 92 4.36
I 8 79 4.29
1 8 66 4.23
1 8 54 4.16
1 8 41 4.10
1 8 29 4..05
1 8 17 4.00
1 8 06 3.93
1 7 95 3.88
I 7.84 3.83
I 7.73 3.77
1 7.63 3.73
1 7.53 3.68
1 7.44 3.63
1 7.34 3.58
I 7.25 3.54

1 6.28 6
1 6.22 6
I 6.16 5
I 6.11 5
I 6.05 5
I 6.00 5
1 5.96 5
I 5.92 5
1 5.07 5
i 5.82 5
1 5.78 5
I 5.74 5
I 5.70 5
1 5.66 5
1 5.63 5
1 5.60 5
1 5.56 5
1 5.53 5
1 5.49 5.32 5.32
1 5.46 5.30 5.30

09 6.09 .I
03 6.03 .I
98 5.98 .I
92 5.92 .I
87 5.87 .I
83 5.83 .1
78 5.78 .1
73 5.73 .1
68 5.68 ,,I
65 5.65 .1
60 5.60 .1
68 5.68 .I
53 5.53 .1
50 5.50 .1
45 5.45 1
42 5.42 I
39 5.39 1
36 5.36 I

1
1

1749 6
1733 2
1717 4
1702 3
1687 9
1673 5
1660 9
1648 3
1635 9
1624 5
1613 5
1603 2
1593 1
1583 5
1574 3
1565 2
1557 1
1549 1
1541 4
1534 1
1527 1

Table 5. Training Accuracy with [I ,6,3) Net

Training Pairs

Input

300
310
320
330
340
350
360
370
380
390
400

Training Accuracy
(RMS = 0.9%)

Output

A1 A2 WT A1 % A2 - WT- %

9.53 .I 1749.6
9.22 .1 1717.4
8.93 .I 1687.9
8.66 .I 1660.9
8.40 .I 1635.9
8.16 .I 1613.5
7.93 .1 1593.1
7.72 .1 1574.3
7.51 .1 1557.1
7.32 .1 1541.4
7.16 .1 1527.1

9.543 ,14
9.240 .23
8.955 .28
8.668 .11
8.401 .01
8.159 .012
7.930 .00
7.711 .12
7.507 .07
7.3_6 .08
7.187 .38

•I01 1744.4 .30
•101 1721.0 .21
.100 1693.4 .33
,i00 1665.6 .28
•i00 1640.3 .27
•i00 1618.1 .29
•100 1597.2 .26
•100 1577.2 .19
•100 1558.2 .07
.IO0 1542.1 .05
•IO0 1529.3 .14

Table 6. Test Set of Neural Net Estimates

Input Optimum N-N Estimates

H AI A2 WT AI % A2 WT %

3O5
315
325
335
345
355
365
375
385
395

9.37 .I 1733.2
9.07 .1 1702.3
8.79 .I 1673.5
8.53 .1 1648.3
8.28 .1 1624.5
8.05 .1 1603.2
7.83 .I 1583.5
7.61 .I 1565.2
7.42 .I 1549.1
7.23 .i 1534,1

9.364 .Ii
9.097 .30
8.801 .12
8.52_ .01
8.283 .04
8.043 .09
7.818 .15
7.604 .08
7.361 .79
7.252 .30

.101 1733.5 .00

.100 1707.1 .28

.100 1679.0 .33

.100 1652.8 .27

.100 1629.5 .31

.100 1607.5 .27

.I00 1587.0 .22
• i00 1567.4 .20
.i00 1550.2 .07
,100 1535.4 .08
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Table 7. Ten Bar Truss Optimum Designs for Training with

L1, L2, and H as Design Conditions

Input Output

LI L2 II A] A2 A3 A4 A5 A6 A7 A8 A9 AIO WT

310 350 380
345 326 360
371 329 310
360 300 340
315 34O 340
380 355 390
322 319 400
400 300 400
300 400 300
3Ii 350 315

6.89 .1 7.00 3.62 .1 .I 5 24 5.08 5.35 I
7.40 .I 7.50 3.56 .I .I 5 62 5.45 5.31 i
8.95
7.69
7 64
7 47
6 35
9 25
9 27
8 33

! 9.10 4.17
I 7.83 3.47
] 7.76 3.93
1 7.60 3.58
] 6.46 3.13
1 9.41 3.93
I 9,39 5.25
1 8.45 4.36

I .i 6 33 6.14 5.74 I
I ] 5 9] 5.73 5.25 I
] I 5 53 5.36 5.56 ]
1 I 5 67 5.50 5.32 I
I I 5.21 5.05 5.03 .1
1 I 6.77 6.56 5.56 .I
I I 5.73 5.57 6.57 .I
I i 5.70 5.53 5.88 .I

1356.7
1456.4
1684.5
1492.6
]407 6
1605 7
1314 2
1780 9
1593 8
1464 6

Table 8. Ten Bar Truss Optimum Designs for Checking
Estimates of the Trained Neural Net

Input Optimum Solutions

LI L2 I1 A] A2 A3 A4 A5 A6 A7 A8 A9 AI0 WT

342 351 383
360 360 360
320 350 360
340 370 340
310 350 380
345 326 360
371 329 310

7.18 .I 7.29 3.60 .I .I 5.44 5.27 5.34 .I
7.93 .I 8.O6 3.93 .I .l 5.74 5.56 5.56 .I
7.38 .I 7.50 3.82 .I .l 5.43 5.26 5.49 .I
8.29 .1 8.41 4.28 .I .I 5.74 5.56 5.82 .1
6.89 .I 6.99 3.62 .I .1 5.24 5.08 5.35 .1
7.39 .I 7.51 3.56 .1 .I 5.62 5.45 5.30 .I
8.95 ,I 9.16 4.17 .1 .I 6.33 6.14 5.74 .i

1466
1593
1417
1578
1356
1456
1684

Table 9. Trained Neural Net Estimates of Ten Bar Truss

Optimum Designs

A1
%

7.138 8.000 7.365 8.398 6.908 7.310 8.916
0.580 0.780 0.200 1.300 0.260 1.080 0.380

0.503 0.505 0.502 0.507 0.502 0.501 0.504

7.245 8.160 7.485 8.558 7.O13 7.448 9.089
0.620 1.240 0.200 1.760 0.330 0.820 0.770

A2

A3
%

A4 3.554 3.957 3.777 4.354 3.551 3.533 4.177
% 1.230 0.690 1.130 1.730 1.900 0.760 0.170

a

A5 0.499 0.499 0.500 0.499 0.500 0.500 0.500

0.501 0.501 0.500 0.501 0.500 0.500 0.500

5.456 5.783 5.461 5.7_I 5.309 5.586 6.359
0.290 0.750 0.570 0.710 1.320 O.610 0.460

5.293 5.594 5.301 5.598 5.164 5.416 6.157
0.470 0.610 0.780 0.680 1.650 0.620 0.280

5.326 5.574 5.477 5.863 5.336 5.311 5.740
0.260 0.250 0.240 0.740 0.260 O.210 O.000

A6

A7
%

A8
%

A9
%

AIO 0.499 0.500 0.499 0.499 0.497 0.503 0.500

1466.000 1598.000 1417.000 1585.000 1362.000 1451.000 1693.000
0.000 0.310 0.000 0.440 0.440 0.340 0.530
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